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The purpose of this paper is to compute the minimal fibering degree of a pair (X ,L)
when X is a projective toric variety with a globally generated line bundle L – we show
the minimal fibering degree equals the lattice width of the polytope associated to
(X ,L).

For any dominant, rational fibration of an n-dimensional projective variety X :

Φ : Xdℙn−1

let CΦ ⊂ X denote the closure of a general fiber. If L is any effective line bundle on
X , the degree of Φ with respect to L is

degL (Φ) = deg( [CΦ] · L).

The minimal fibering degree of a pair (X ,L) is

mfd(X ,L) = min{degL (Φ) | Φ : Xdℙn−1 is dominant}.

The minimal fibering degree was introduced recently ([9]) in order to calculate the
degree of irrationality – a higher dimensional analogue of the gonality of a curve –
of divisors in an ambient variety. Only a few elementary examples of the minimal
fibering degree have been computed. In this paper we compute the minimal fibering
degree of an arbitrary projective toric variety.

Theorem A. Let (X ,L) be a projective toric variety with L an ample toric line bundle (or
more generally, L may be taken to be simply globally generated). If P = P (X ,L) is the lattice
polytope associated to (X ,L) then

mfd(X ,L) = ℓw(P )

(where ℓw(P ) is the lattice width of the polytope P , described below).

This gives a complete answer to [9, Ques. 1.13(3)]. In the case L is sufficiently ample,
Theorem A (together with [9, Thm. A]) gives a new proof of the computation of the
gonality of a curve in a smooth toric surface – originally proved by Kawaguchi ([8,
Thm. 1.3] see also [1, 2]).

During the preparation of this article, the second author was partially supported by NSF grant
FRG-1952399.



Given a lattice polytope P ⊂ ℝn — i.e. the convex hull of finitely many points
x1, . . . ,xe ∈ ℤn — the lattice width of P (Definition 2.8) computes the minimal width
of the image of P under a nonzero linear projection

P→ℝ

that sends lattice points to lattice points. This is an invariant of lattice polytopes of
independent interest (see [4, 5, 6]). The lattice width has made an appearance in
algebraic geometry in several places as well ([1, 2, 3, 8, 10]). One feature of our proof
is that we show how to compute the lattice width of a polytope P (X ,L) explicitly in
terms of a toric resolution of singularities of X .

Figure 0.1. A lattice projection that computes the lattice width of a
polytope corresponding to a singular toric surface.

To prove the theorem we first show that any linear projection

P→ℝ

sending lattice points to lattice points gives rise to an (equivariant) fibration

Xdℙn−1,

with fiber class a one-parameter curve, such that the degree of the fibration equals the
width of the image of P under the projection. This shows mfd(X ,L) ≤ ℓw(P ). In the
other direction (Lemma 2.5), we show that for any fibration

Φ : Xdℙn−1

there is an equivariant fibration ΦT : Xdℙn−1 with degL (ΦT ) ≤ degL (Φ) (and the
degree of any equivariant fibration is computed by the lattice width in some direction).

Throughout we work with varieties over an arbitrary algebraically closed field. All
varieties are irreducible by convention.
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1. Preliminaries on Toric Varieties

The purpose of this section is to recall basic facts about toric varieties including
their curves, invariant divisors, and intersection numbers. We also recall the definition
of a polytope of a toric pair. We include this for the convenience of the reader, but
we do not claim any originality in this section. We refer the reader to Fulton’s book
([7]) for more background. Throughout this section, let X denote a projective toric
variety of dimension n.

First we recall the standard notation. Let N � ℤn be a lattice and let M =

Hom(N ,ℤ) the dual lattice (we use the notation Nℝ = N ⊗ ℝ and Mℝ = M ⊗ ℝ).
Then from a fan Σ in N one constructs a toric variety X with torus T � 𝔾nm ([7, ch.
1]). For each cone 𝜎 ∈ Σ there is a associated distinguished point x𝜎 ∈ X (k ) ([7, p.
28]). Let O𝜎 denote the torus orbit of x𝜎 andV (𝜎) the closure of O𝜎 in X . There are
bijections:

(1)
{

orbits of the action
T ⟳ X

}
↔

{
O𝜎

���� 𝜎 ∈ Σ is
a cone

}
, and

(2)
{
T − invariant, closed

subvarieties of X

}
↔

{
V (𝜎)

���� 𝜎 ∈ Σ is
a cone

}
.

The bijection (2) satisfies codim(V (𝜎)) = dim(𝜎).

1.1. Cartier divisors on toric varieties. LetD1, . . . ,Dr be the irreducibleT -invariant
divisors of X (corresponding to the 1-dimensional cones 𝜏1, . . . , 𝜏r ∈ Σ). There is a
map:

M→ ⊕ ℤDi

(
m ↦→ div(𝜒m) =

r∑︁
i=1

⟨m,vi ⟩Di

)
([7, p. 61]), and there are standard exact sequences:

0 → M
div−−→ ⊕ℤDi → Cl(X ) → 0,

and
0 → M

div−−→ DivT (X ) → Pic(X ) → 0

(where DivT (X ) is the subgroup of Cartier divisors in ⊕ℤDi [7, p. 63]).
A convenient representation of the data of a torus-invariant Cartier divisor is that

of its support function.

Definition 1.1 ([7, p. 66]). Let D be a torus-invariant Cartier divisor. The support
function of D is a piecewise linear function:

𝜓D : Nℝ → ℝ
3



defined as follows: for each cone 𝜎 ∈ Σ, D |U𝜎
= div(𝜒−m𝜎 ) for some m𝜎 ∈ M and set

𝜓D |𝜎 = ⟨m𝜎, ·⟩.

Remark 1.2. By the definitions, 𝜓D |N is integer valued. It can also be checked that 𝜓D
is continuous. In fact, any continuous function

𝜓 : Nℝ→ℝ

which is linear on each cone and integral on N arises uniquely as the support function
of some torus-invariant Cartier divisor D = a1D1 + · · · + arDr . Specifically, if vi ∈ N is
the primitive lattice generator of the ray associated to the divisor Di then

ai = −𝜓(vi ).

Under this correspondence, the globally linear functions correspond to the globally
principal T -invariant divisors.

Example 1.3. When X = ℙ1, the support function associated to the divisor D =

a1 [0] + a2 [∞] is the function

𝜓D : ℝ → ℝ

v ↦→
{
−a1v v ≥ 0

a2v v ≤ 0

and 𝜓D is linear if and only if a1 + a2 = 0.

Definition 1.4. If L = O(a1D1 + · · · arDr ) is a globally generated T -equivariant line
bundle on X then the polytope associated to (X ,L) is by definition

P (X ,L) := {m ∈ Mℝ | ⟨m,vi ⟩ ≥ −ai }

where vi ∈ N is the integral generator of the ray in Nℝ associated to Di . Alternatively,
one can define the polytope as follows. For each torus invariant point

x1, . . . ,xm ∈ X T

the restriction L |xi gives a 1-dimensional T -representation, to which we can associate
a character mi ∈ M . Then

P (X ,L) =
(

the convex hull
of mi ∈ M

)
⊂ Mℝ.
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Figure 1.1. Polytopes of a cone over a conic, its resolution 𝔽2, and
(ℙ2,O(3)).

Remark 1.5. With L as above, the lattice points of P (X ,L) correspond to a basis for
the global sections of L. More precisely, each m ∈ P (X ,L) ∩M is a character which
gives rise to a rational function 𝜒m on X . We have

divL (𝜒m) = div(𝜒m) +
r∑︁
i=1

aiDi =
r∑︁
i=1

(⟨m,vi ⟩ + ai )Di

is effective since m ∈ P (X ,L) and so 𝜒m is a global section of L. Furthermore, these
sections 𝜒m form a basis forH 0(X ,L). In the opposite direction, given aT -equivariant,
globally generated line bundle L, the characters that appear in the T -representation
H 0(X ,L) give the integral points of the polytope P (X ,L) ⊂ Mℝ.

Remark 1.6. There is a surjective map

(1.1) f :
{
T -invariant, closed
subvarieties of X

}
→

{
faces of
P (X ,L)

}
that respects the partial ordering given by inclusion. It sends a divisor Di to the face:

P (X ,L) ∩ (⟨·,vi ⟩ = 0)

and this determines the map as every T -invariant, closed subvariety is an intersection
of divisors. In the case L is very ample this map is a bijection. Finallly, if V (𝜎) is
a closed T -invariant subvariety and m ∈ P (X ,L) is a lattice point then div(𝜒m) ∈
H 0(X ,L) and

(1.2) V (𝜎) ⊂ Supp(div(𝜒m)) ⇐⇒ m ∉ f (V (𝜎)).

Remark 1.7 ([7, §3.4]). If D is aT -invariant divisor with a base point free linear system
one can recover the support function 𝜓D from the polytope P = P (X ,O(D)) and visa
versa:

P = {m ∈ Mℝ | ⟨m, ·⟩ ≥ 𝜓D }, and 𝜓D (v ) = min
m∈P

⟨m,v⟩.
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1.2. Toric rational maps. Let X and Y be toric varieties with tori TX and TY , re-
spectively.

Definition 1.8. A toric morphism (resp. a toric rational map) is a regular (resp. rational)
map

X→Y (resp. XdY )
that extends a group homomorphism TX → TY .

Remark 1.9. There is a correspondence between toric rational maps XdY and maps
of lattices NX → NY . Given a toric rational map, its maximum domain of definition
can be determined from the map on lattices: it is the union of all U𝜎 where 𝜎 is a
cone of X mapping into a cone ofY. So, under this correspondence, the regular maps
(i.e. classes of toric morphisms) correspond to fan-preserving maps of lattices.

Definition 1.10. A toric rational map Φ : XdY is called a toric fibration if it is
dominant.

Remark 1.11. If Φ : XdY is a toric fibration then the restriction to the tori Φ|TX :
TX → TY is surjective.

Remark 1.12. One could equivalently define a toric fibration to be a toric rational map
XdY so that the the map on lattices Φ : NX → NY satisfies rank(Φ) = rank(NY ).

1.3. Functoriality of divisors. Let 𝜋 : X → Y be a toric morphism. There is a
pullback:

𝜋∗ : DivT (Y )→DivT (X ).
First we describe how to compute this pullback in terms of support functions. Let
D ⊂ Y be a torus-invariant Cartier divisor. The morphism 𝜋 : X →Y induces a map
on lattices

𝜋 : (NX )ℝ → (NY )ℝ.
The support function

𝜓D : (NY )ℝ → ℝ.

onY pulls back to a support function

𝜓 := 𝜋 ◦ 𝜓D : (NX )ℝ → ℝ

on X . Then (by Remark 1.2) there exists a unique torus-invariant Cartier divisor D ′

on X so that 𝜓 = 𝜓D ′ and we have D ′ = 𝜋∗D .
When L = O(D) is globally generated, we can describe this pullback in terms of

polytopes. The map 𝜋 induces a map on the dual lattices

𝜋
∨ : MY → MX
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that sends the lattice points of P (Y,L) to the lattice points of P (X , 𝜋∗L). This corre-
sponds to the pullback of global sections (as in Remark 1.5). This extends to a map
on the polytopes:

𝜋P : P (Y,L)→P (X , 𝜋∗(L))

In fact, as L is globally generated, the map 𝜋P is surjective.

Proposition 1.13. If 𝜋 : X →Y is a toric morphism and L is a globally generated T -line
bundle onY then 𝜋P : P (Y,L)→P (X , 𝜋∗(L)) is surjective.

Proof. The polytope P (X , 𝜋∗(L)) is the convex hull of its vertices, which are lattice
points. As 𝜋P is linear and P (Y,L) is convex, it suffices to show that every vertex of
P (X , 𝜋∗(L)) is in the image of 𝜋P . For every vertex m ∈ P (X , 𝜋∗(L)) there is a point
x ∈ X T such that the face map (Equation 1.1) satisfies

f (x) = m.

In fact, (by Equation 1.2) 𝜒m is the unique character ofH 0(X , 𝜋∗L) that doesn’t vanish
at x . The map

𝜋 : X→Y

sends x to a distinguished point ofY corresponding to aT -invariant closed subvariety
V (𝜎) inY . As L is globally generated, there is necessarily a point m′ ∈ P (Y,L) such
that

𝜋(x) ∉ Supp(div(𝜒m′))

(any m′ ∈ f (V (𝜎)) suffices). Therefore, 𝜋∗(𝜒m′) does not vanish on x and thus

𝜋P (m′) = m. □

Example 1.14. Although the map on polytopes is surjective, the map on lattice points

𝜋P : P (Y,L) ∩MY→P (X , 𝜋∗(L)) ∩MX

is not surjective in general. Consider the toric map

𝜋 : ℙ1 → ℙ2

[x0,x1] ↦→ [x3
0 : x2

0x1 : x3
1] .

If L = Oℙ2 (1) then P (ℙ2,L) has 3 lattice points but P (ℙ1, 𝜋∗L) has 4 lattice points.

7



★ •
∗

→

★

•
∗

Figure 1.2. A depiction of the map on polytopes from the example.

1.4. Intersection theory of one-parameter curves and torus-invariant divisors.

Definition 1.15. Let 0 ≠ v ∈ N . Then the one-parameter subgroup associated to v , is the
map

𝜙v : 𝔾m → T

induced by the map of lattices

𝜙v : ℤ → N

1 ↦→ v .

Definition 1.16. The one-parameter curve associated to v , is the induced map 𝜙v : ℙ1→X
(which we also denote by 𝜙v by abuse of notation) and the cycle associated to v is

[Cv ] := (𝜙v )∗( [ℙ1]) ∈ Z1(X ).

For v ∈ N nonzero andD a torus-invariant Cartier divisor, we recall how to compute
the intersection number [Cv ] ·D . Let 𝜎0 be the smallest cone of X containing v , and
𝜎∞ be the smallest cone of X containing −v . Then the images of 0 and ∞ are the
distinguished points x𝜎0 and x𝜎∞ , respectively.

Proposition 1.17. Let v ∈ N be nonzero and [Cv ] the associated cycle such that the limits
of 𝜙v at 0 (resp. ∞) is x𝜎0 (resp. x𝜎∞ ). If D ⊂ X is a torus-invariant Cartier divisor with
support function 𝜓D then the local intersection numbers at x𝜎0 and x𝜎∞ are:

( [Cv ] · D)x𝜎0
= −𝜓D (v ) and ( [Cv ] · D)x𝜎∞ = −𝜓D (−v ).

Consequently,
[Cv ] · D = −(𝜓D (v ) + 𝜓D (−v )).

Proof. We compute 𝜙∗vOX (D) by pulling back the support function 𝜓D . The support
function 𝜓D : Nℝ → ℝ pulls back along 𝜓v to a support function

𝜓D ◦ 𝜓v : ℝ → ℝ

1 ↦→ 𝜓D (v ).
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This support function corresponds to a torus-invariant Cartier divisor D ′ on ℙ1

such that 𝜓∗
vOX (D) � Oℙ1 (D ′). It follows that

( [Cv ] · D)𝜎0 = ord0(D ′) = −𝜓D ′ (1) = −𝜓D (v )

and
( [Cv ] · D)𝜎∞ = ord∞(D ′) = −𝜓D ′ (−1) = −𝜓D (−v )

as desired. □

Corollary 1.18. If D is a torus-invariant prime divisor and v the primitive generator of the
ray in the fan determined by D , then [Cv ] · D = 1.

Proof. In this case, 𝜎0 is the ray determined by v . The cone 𝜎∞ contains −v , so it
cannot contain the ray determined by D as 𝜎∞ is strongly convex. Then 𝜓D |𝜎∞ ≡ 0
and thus (by Remark 1.2)

[Cv ] · D = −𝜓D (v ) = 1. □

2. Minimal fibering degree of toric varieties

This section contains the proof of the main theorem. To prove Theorem A we show
that the minimal fibering degree can be computed by torus equivariant fibrations. We
then relate the degrees of these torus equivariant fibrations to the widths of lattice
projections of the polytope of X .

Definition 2.1. Let X be an n-dimensional projective variety over k an algebraically
closed field with line bundle L. Consider a dominant rational map:

Φ : Xdℙn−1.

Let CΦ be the closure of a general fiber of Φ. The L-degree of Φ is

degL (Φ) = deg( [Cb ] · L).

Definition 2.2 ( [9, Def. 1.4]). With (X ,L) as above, if L is effective, then the minimal
fibering degree of the pair (X ,L) is

mfd(X ,L) := min{degL (Φ) | Φ : Xdℙn−1}.

Lemma 2.3. Let X be a smooth n-dimensional projective toric variety.

(1) For every one-parameter curve 𝜙v : ℙ1→X there is a torus equivariant fibration

Φv : Xdℙn−1

(where ℙn−1 has the standard torus action) such that [CΦv ] ≡rat [Cv ] ∈ CH1(X ).
(2) Likewise, for any torus equivariant fibration:

Φ : Xdℙn−1

there exists a one-parameter curve 𝜙v such that [Cv ] ≡rat [CΦ].
9



Proof. For (1), first consider the case when v is primitive. Choose a basis u1, . . . ,un−1

for v⊥ in M . These characters define a dominant map

T→𝔾n−1
m

t ↦→ (𝜒u1 (t ), . . . , 𝜒un−1 (t ))

that uniquely extends to a toric fibration Φ : Xdℙn−1. We claim that for every T -
divisor D ⊂ X :

[CΦ] · D = [Cv ] · D .

The closure of the fiber over 1 ∈ 𝔾n−1 has class [Cv ] (this uses that v is primitive).
Now, consider a general point b ∈ 𝔾n−1 ⊂ ℙn−1. Let t ∈ T be a point in Φ−1(b). So

Φ−1(Φ(t )) = CΦ.

Then

[Cv ] · D = [t−1(CΦ)] · D
= [t (t−1(CΦ))] · t (D) (as t gives an automorphism of X )

= [CΦ] · D . (as D is T -invariant)

As numerical equivalence and rational equivalence coincide on smooth toric varieties
this implies [CΦ] ≡rat [Cv ].

The case that v = mv0 is not primitive (with m > 1 and v0 primitive) is resolved by
postcomposing the above map

T→𝔾n−1
m

with a degree m homomorphism 𝔾n−1
m →𝔾n−1

m .

For (2), such a torus equivariant fibration gives rise to a one-parameter subgroup
(the reduced connected component of the identity in the kernel of Φ|T ). Consider the
induced vector v0 ∈ N . By equivariance, there is a factorization

T 𝔾n−1
m

𝔾n−1
m .

Φv0 |T

Φ|T
b

By a computation
[CΦ] ≡rat deg(b) [Cv0] ≡rat [Cdeg(b)·v0],

so we may set v = deg(b)v0. □

Lemma 2.4. Let X be smooth, n-dimensional, projective variety. If

Φ : Xdℙn−1

is any dominant fibration and D ⊂ X is any effective divisor then [CΦ] · D ≥ 0.
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Proof. Let b ∈ ℙn−1 be a general point and consider the graph of Φ

ΓΦ ⊂ X × ℙn−1.

Let 𝜋i denote the projection of X × ℙn−1 onto each factor. Then

[CΦ] = (𝜋1)∗(ΓΦ · X × b).

Thus

[CΦ] · D = (𝜋1)∗(ΓΦ · X × b) · D
= (ΓΦ · (X × b)) · 𝜋∗1D
= (ΓΦ · 𝜋∗2 (b)) · 𝜋

∗
1D

= (ΓΦ · 𝜋∗1D) · 𝜋∗2 (b)
= (𝜋2)∗(ΓΦ · 𝜋∗1D) · b .

Lastly, ΓΦ · 𝜋∗1D is an effective divisor on ΓΦ (as the map ΓΦ→X is dominant and ΓΦ

is irreducible). Thus

[CΦ] · D = (𝜋2)∗(ΓΦ · 𝜋∗1D) · b
= deg((ΓΦ ∩ 𝜋∗1D)→ℙn−1)
≥ 0. □

Lemma 2.5. Let X be a smooth projective toric variety and let [C ] be an effective curve class
that meets all effective,T -invariant divisors non-negatively. There exists a one-parameter curve
𝜙v such that for all globally generated line bundles L:

[C ] · L ≥ [Cv ] · L.

Example 2.6. Here we illustrate the proof of Lemma 2.5 by an example. To start
we are given a curve C with prescribed intersection numbers with the torus-invariant
divisors, as in the left figure. Consider any irreducible T -divisor D that has positive
intersection number with C (in this case the top right divisor). From this divisor we
construct a one-parameter curve Cv . This has intersection multiplicity 1 with D and
meets exactly one other stratum of the toric variety (in our example, the intersection
of the bottom and left curves, as illustrated in the middle figure). Given any globally
generated line bundle there is a section that does not vanish at the distinguished
point of the stratum (in this example we take the section m in the right figure), the
corresponding divisor is particularly convenient to intersect with [Cv ] as most of the
terms vanish.
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div(𝜒m)

Cv

C

2

1

1

3

0

0

1

> 0

> 0

0

2

4
3

m

By direct comparison we complete the proof, in this example we have:

[C ] · L =[C ] · div(𝜒m)
=1 · 0 + 2 · 2 + 1 · 4 + 0 · 3 + 3 · 0
≥(> 0) · 0 + 0 · 2 + 1 · 4 + 0 · 3 + (> 0) · 0
=[Cv ] · L.

Proof of Lemma 2.5. Let D1 . . .Dr be the T -invariant divisors. As the curve class [C ]
corresponds to an effective curve and X is projective, it cannot intersect all the effec-
tive T -divisors to multiplicity 0. Assume that

[C ] · D = a > 0

for one such T -invariant prime divisor D .
Let v ∈ N be the integral generator of the ray corresponding to D . This gives rise

to a one-parameter curve

𝜙v : ℙ1→X .

Let 𝜎 be the smallest cone containing −v ∈ N . Then the image of 0 ∈ ℙ1 is the
distinguished point of D and the image of ∞ ∈ ℙ1 is the distinguished point of 𝜎.
These are the only intersection points of Cv with the T -invariant divisors of X .

As L is globally generated there is a character m ∈ M such that 𝜒m ∈ Γ(X ,L) and
𝜒m does not vanish at the distinguished point of 𝜎. Then

div(𝜒m) = b1D1 + · · · bD + · · · + brDr (b ,bi ≥ 0).

As 𝜒m does not vanish at the distinguished point of 𝜎, it follows that for every Di such
that x𝜎 ∈ Di the coefficient bi = 0. So, as D is the unique prime divisor containing its
distinguished point, by Corollary 1.18:

[Cv ] · L = [Cv ] · (bD) = b .
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Therefore:

[C ] · L =[C ] · div(𝜒m)
=[C ] · (b1D1 + · · · + bD + · · · + brDr )
=[C ] · (b1D1) + · · · + [C ] · (bD) + · · · + [C ] · (brDr )
≥[C ] · (bD) (by assumption on [C ])
=b · a ≥ b · 1 = [Cv ] · L. □

Remark 2.7. Interestingly, for any curve class 0 ≠ [C ] ∈ CH1(X ) such that [C ] ·D ≥ 0
for all effective T -invariant divisors D , Payne constructs ([11, Prop. 2]) a family of
curves with class [C ] that sweeps out X .

Definition 2.8. Let P ⊂ Mℝ be a lattice polytope (that is, the convex hull of finitely
many point in M ). For any nonzero v ∈ N , the lattice width of P in the direction of v is

ℓwv (P ) := width ({⟨x ,v⟩ ∈ ℝ|x ∈ P }) .

In other words, v induces a linear projection (mapping M to ℤ) from P to ℝ, and
ℓwv (P ) is the width of the image. The lattice width of P is simply:

ℓw(P ) := min{ℓwv (P ) | 0 ≠ v ∈ N }.

Example 2.9. For the figure in the introduction, the lattice width is 6 (which the map
in the introduction realizes). To argue this, note that there are 8 lattice points on a
line in P that are all identified under this horizontal projection. Any projection that
does not identify these points, must have width at least 7.

Proposition 2.10. Let D be a globally generated torus-invariant divisor and v ∈ N . Then

[Cv ] · D = ℓwv (P (X ,OX (D)).

Proof. By Remark 1.7, for each u ∈ N we have

𝜓D (u) = min
x∈P (X ,OX (D))

⟨x ,u⟩.

It follows that

ℓwv (P (X ,OX (D)) = max
x∈P (X ,OX (D))

⟨x ,v⟩ − min
x∈P (X ,OX (D))

⟨x ,v⟩ = −(𝜓D (v ) + 𝜓D (−v )).

So, we are done by Proposition 1.17. □

Proof of Theorem A. Assume L = OX (D) for some T -invariant divisor D . If X is not
smooth, take a projective, toric resolution of singularities of X to obtain

` : X ′→X .

Now the pair (X ′, `∗L) satisfies

P (X ′, `∗L) = P (X ,L),
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and `∗L is globally generated. Finally for any rational fibration:

Φ : Xdℙn−1

there is an induced rational fibration

Φ′ : X ′dℙn−1

and Φ′ satisfies
`∗ [CΦ′] = [CΦ] .

So by the projection formula:

mfd(X ,L) = mfd(X ′, `∗L).

Therefore, it suffices to prove Theorem A in the case X is smooth.
By Lemma 2.3 for any nonzero v ∈ N , there is a torus equivariant fibration:

Φv : Xdℙn−1

such that [CΦv ] ≡rat [Cv ]. By Proposition 2.10,

degL (Φv ) = [Cv ] · D = ℓwv (P (X ,L)).

Thus, by the definitions:
mfd(X ,L) ≤ ℓw(P (X ,L)).

On the other hand, by Lemma 2.4, if

Φ : Xdℙn−1

is any fibration, then [CΦ] ·E ≥ 0 for any effective divisor E on X . Then by Lemma 2.5,
there exists a v ∈ N such that

[Cv ] · D ≤ [CΦ] · D = degL (Φ).

Therefore (by Proposition 2.10):

ℓw(P (X ,L)) ≤ ℓwv (P (X ,L)) = [Cv ] · D ≤ degL (Φ).

As Φ is arbitrary this gives ℓw(P (X ,L)) ≤ mfd(X ,L) which completes the proof. □

Remark 2.11. The proof of Theorem A shows that if X is smooth there is a finite list
of rational fibrations:

S = {Φv : Xdℙn−1 | v ∈ Σ generates a one-dimensional cone}

such that for any globally generated line bundle L:

mfd(X ,L) = min{degL (Φv ) | Φv ∈ S}.

Similarly one can compute the lattice width of P (X ,L) by minimizing over generators
of the one-dimensional cones of Σ.

14
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